Long-lasting foetal microchimerism in maternal brain is common, affects many brain regions
Thursday, 27 September 2012
First Evidence of Foetal DNA Persisting in Female Human Brain Tissue
Posted by ZenMaster at Thursday, September 27, 2012
Labels: brain, chimera, fetal, human, microchimerism, US 0 comments
Saturday, 9 June 2012
Microchimerism: Foetal Cells Can Migrate Into Maternal Organs During Pregnancy
Some mothers literally carry pieces of their children in their bodies
Posted by ZenMaster at Saturday, June 09, 2012
Labels: chimera, embryo, fetal, human, microchimerism, stem cells 0 comments
Friday, 2 May 2008
Microchimerism: The Ties That Binds
Mothers and offspring can share cells throughout life — with positive and negative effects
Friday, 02 May 2008
Cutting the umbilical cord doesn't necessarily sever the physical link between mother and child. Many cells pass back and forth between the mother and foetus during pregnancy and can be detected in the tissues and organs of both even decades later. This mixing of cells from two genetically distinct individuals is called microchimerism. The phenomenon is the focus of an increasing number of scientists who wonder what role these cells play in the body.
A potentially significant one, it turns out. Research implicates that maternal and foetal microchimerism plays both adverse and beneficial roles in some autoimmune diseases as well as the prevention of at least one cancer. This double-edged sword in turn has opened new avenues of study of the body's immune system and the possibility of developing new tests and therapies.
Two of the world's leading researchers in microchimerism are J. Lee Nelson, M.D., of Fred Hutchinson Cancer Research Center's Clinical Research Division; and V.K. Gadi, M.D., Ph.D., assistant professor of medicine at the University of Washington. Nelson also is a professor of medicine at the University of Washington. Gadi is also a research associate in the Hutchinson Center's Clinical Research Division.
In 2007, they were the first to report these potentially beneficial effects of microchimerism:
- In January, Nelson reported the first discovery that cells passed from mother to child during pregnancy can differentiate into functioning islet beta cells that produce insulin in the child. The same study also found maternal DNA in greater amounts in the blood of children and young adults with Type 1 diabetes than their healthy siblings and a control group, implying that the cells may be attempting to repair damaged tissue. There was no evidence that the mother's cells were attacking the child's insulin cells and no evidence that the maternal cells were targets of an immune response from the child's immune system. The findings could lead to new approaches to treating Type 1 diabetes. For example, if maternal microchimerism results in cells that make insulin, a mother's stem cells might be harvested and used to treat her diabetic child. Such cells would have a genetic edge over donated islet cells from a cadaver that are usually completely genetically mismatched.
- Last October, a research paper by Gadi and Nelson described findings that suggest foetal cells that persist in a woman's body long after pregnancy in some cases may reduce the woman's risk of breast cancer. The scientists examined the blood of 82 women post-pregnancy, 35 of whom had had breast cancer. They looked for male DNA in the blood, presuming it was present due to a prior pregnancy with a male. Foetal microchimerism (FMc) was found significantly more often in healthy women than women with a history of breast cancer, 43 percent versus 14 percent respectively. The scientists concluded that FMc may contribute to the reduction of breast cancer based on the hypothesis that residual foetal cells may provide immune surveillance of malignant cells in the mother. They caution that further studies are needed to confirm the theory.
- In 1996 Nelson's lab proposed that foetal microchimerism might in part explain the female predilection to autoimmune disease and they subsequently discovered elevated levels of foetal microchimerism in the blood of women with scleroderma compared to healthy women. Subsequent studies found foetal microchimerism in internal organs and in skin affected by scleroderma.
- In 1999 Nelson's group found that maternal microchimerism persists into adult life in individuals who have normal immune systems. They presumed this is due to engraftment with maternal stem cells. Stem cells can become multiple different types of cells. Researchers wondered whether maternal cells can become part of the cells that make up tissues. Scientists found maternal cells in the hearts of infants who died from heart block due to neonatal lupus and identified that most of the maternal cells were cardiac myocytes (heart muscle cells). They theorized that the maternal cells are the target of an immune attack.
- On the other hand, women with rheumatoid arthritis often have their disease improve or even disappear during pregnancy. A beneficial role of foetal microchimerism was suggested by the research finding that elevated levels of foetal microchimerism significantly correlated with pregnancy-induced amelioration of rheumatoid arthritis.
Tests of female donor cells found they contained male microchimerism, consistent with the interpretation that foetal microchimerism contributes to graft-vs.-host disease. In kidney, pancreas and islet transplantation, Gadi, Nelson and collaborators tested serial serum samples and found that donor-specific microchimerism detection may become a useful non-invasive test for early rejection. This has led to work by several other research groups to therapeutically exploit the principles of naturally-acquired microchimerism in their selection of donors for transplantation.
The discovery that a mother's cells can turn up in her adult progeny and that foetal cells can occur in women who were once pregnant heralds the emergence of microchimerism as an important new theme in biology.
About Fred Hutchinson Cancer Research Center At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.
.........
ZenMaster
For more on stem cells and cloning, go to CellNEWS at
Posted by ZenMaster at Friday, May 02, 2008
Labels: chimera, diabetes, embryonic, fetal, human, microchimerism, research, stem cells, US 0 comments