Pages
Monday, 21 December 2009
Lack of Diversity in Embryonic Stem Cell Lines
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Successful Stem Cell Therapy for Treatment of Eye Disease
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Wednesday, 9 December 2009
Gene Therapy and Stem Cells save Limb
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Umbilical Stem Cells May Help Recover Lost Vision for Those With Corneal Disease

For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Stem Cells and Acute Heart Attack
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Tuesday, 8 December 2009
Superior Offspring without Genetic Modification

For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Stem Cells Can be Engineered to Kill HIV
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
New Skin Stem Cells Surprisingly Similar to Those Found in Embryos
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Friday, 4 December 2009
Scientists Rescue Visual Function in Rats Using Induced Pluripotent Stem Cells

For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Thursday, 3 December 2009
Adult Stem Cells May Help Repair Hearts Damaged by Heart Attack
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Saturday, 28 November 2009
First-ever Blueprint of A Minimal Cell Is More Complex Than Expected

Remarkably, the regulation of this bacterium's transcriptome is much more similar to that of eukaryotes – organisms whose cells have a nucleus – than previously thought. As in eukaryotes, a large proportion of the transcripts produced from M. pneumoniae's DNA are not translated into proteins. And although its genes are arranged in groups as is typical of bacteria, M. pneumoniae doesn't always transcribe all the genes in a group together, but can selectively express or repress individual genes within each group. Unlike that of other, larger, bacteria, M. pneumoniae's metabolism does not appear to be geared towards multiplying as quickly as possible, perhaps because of its pathogenic lifestyle. Another surprise was the fact that, although it has a very small genome, this bacterium is incredibly flexible and readily adjusts its metabolism to drastic changes in environmental conditions. This adaptability and its underlying regulatory mechanisms mean M. pneumoniae has the potential to evolve quickly, and all the above are features it also shares with other, more evolved organisms. "The key lies in these shared features", explains Anne-Claude Gavin, an EMBL group leader who headed the study of the bacterium's proteome: "Those are the things that not even the simplest organism can do without and that have remained untouched by millions of years of evolution – the bare essentials of life". This study required a wide range of expertise, to understand M. pneumoniae's molecular organisation at such different scales and integrate all the resulting information into a comprehensive picture of how the whole organism functions as a system – an approach called systems biology. "Within EMBL's Structural and Computational Biology Unit we have a unique combination of methods, and we pooled them all together for this project", says Peer Bork, joint head of the unit, co-initiator of the project, and responsible for the computational analysis. "In partnership with the CRG group we thus could build a complete overall picture based on detailed studies at very different levels." Bork was recently awarded the Royal Society and Académie des Sciences Microsoft Award for the advancement of science using computational methods. Serrano was recently awarded a European Research Council Senior grant. References: Proteome Organization in a Genome-Reduced Bacterium. Sebastian Kühner, Vera van Noort, Matthew J. Betts, Alejandra Leo-Macias, Claire Batisse, Michaela Rode, Takuji Yamada, Tobias Maier, Samuel Bader, Pedro Beltran-Alvarez, Daniel Castaño-Diez, Wei-Hua Chen, Damien Devos, Marc Güell, Tomas Norambuena, Ines Racke, Vladimir Rybin, Alexander Schmidt, Eva Yus, Ruedi Aebersold, Richard Herrmann, Bettina Böttcher, Achilleas S. Frangakis, Robert B. Russell, Luis Serrano, Peer Bork, and Anne-Claude Gavin Science 27 November 2009: 1235-1240, DOI: 10.1126/science.1176343 Transcriptome Complexity in a Genome-Reduced Bacterium. Marc Güell, Vera van Noort, Eva Yus, Wei-Hua Chen, Justine Leigh-Bell, Konstantinos Michalodimitrakis, Takuji Yamada, Manimozhiyan Arumugam, Tobias Doerks, Sebastian Kühner, Michaela Rode, Mikita Suyama, Sabine Schmidt, Anne-Claude Gavin, Peer Bork, and Luis Serrano Science 27 November 2009: 1268-1271, DOI: 10.1126/science.1176951 Impact of Genome Reduction on Bacterial Metabolism and Its Regulation. Eva Yus, Tobias Maier, Konstantinos Michalodimitrakis, Vera van Noort, Takuji Yamada, Wei-Hua Chen, Judith A. H. Wodke, Marc Güell, Sira Martínez, Ronan Bourgeois, Sebastian Kühner, Emanuele Raineri, Ivica Letunic, Olga V. Kalinina, Michaela Rode, Richard Herrmann, Ricardo Gutiérrez-Gallego, Robert B. Russell, Anne-Claude Gavin, Peer Bork, and Luis Serrano Science 27 November 2009: 1263-1268, DOI: 10.1126/science.1177263 ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Stem Cells Heal Lungs of Newborn Animals
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Wednesday, 25 November 2009
Research Teams Map Genetic, Genomic Patterns in Han Chinese Population
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
Wednesday, 14 October 2009
New Strategy for Mending Broken Hearts?



For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Liver Cells Grown from Patients' Skin Cells

For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Monday, 12 October 2009
Jumping Genes, Gene Loss and Genome Dark Matter
Chromosomes are shown colour-coded in the outermost circle. Inside are lines connecting the origin and the new location (where known) of 58 out of 75 putative inter-chromosomal duplications, coloured according to their chromosome of origin. Credit: Jan Aerts, Wellcome Trust Sanger Institute.
Two consequences are particularly striking in this study of apparently healthy people. First, 75 regions have jumped around in the genomes of these samples; second, more than 250 genes can lose one of the two copies in our genome without obvious consequences and a further 56 genes can fuse together potentially to form new composite genes. "This paper detailing common CNVs in different world populations, and providing the first glimpse into evolutionary biology of such class of human variation, is unquestionably one of the most important advances in human genome research since the completion of a reference human genome," says Professor James R. Lupski, Vice Chair of the department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas. "It complements the cataloguing of single nucleotide variation delineated in the HapMap Project and will both enable some new approaches to, and further augment other studies of, basic human biology relevant to health and disease." "The genetic 'blueprint' of humans is the human genome," says Sir Mark Walport, Director of the Wellcome Trust. "But we are each unique as individuals, shaped by variation in both genome and environment. Understanding the variation amongst human genomes is key to understanding the inherited differences between each of us in health and disease. A whole new dimension has been added to our understanding of variation in the human genome by the identification of copy number variants." The results also give, for the first time, a minimum measure of the rate of CNV mutation: at least one in 17 children will have a new CNV. In many cases, that CNV will have no obvious clinical consequences. However, for some the effects are severe. In those cases the data are captured in the DECIPHER database, a repository of clinical information about CNVs designed to aid the diagnosis of rare disorders in young children. However, CNVs are not only about here and about now; they are also ancient legacies of how our ancestors adapted to their environments. Among the most impressive variations between populations are CNVs that modify the activity of the immune system, known to be evolving rapidly in human populations, and genes implicated in muscle function. The researchers propose that the consequences of these CNVs can be dissected in population studies. The team scanned 42 million locations on the genomes of 40 people, half of European ancestry and half of West-African ancestry. The scale of the method meant they could detect CNVs as small as 450 bases occurring in one in 20 individuals. However, the researchers concede that their map of common variants will not account for much of the 'dark matter' of the genome - the missing heritability where, despite diligent searches, genetic variants have not been found for common disease. "CNV studies have made huge advances in the past few years, but we are still looking only at the most common CNVs," explains Dr Steve Scherer of the Hospital for Sick Children, Toronto. "We suspect that there are many CNVs that have real clinical consequences that occur in perhaps one in 50 or one in 100 people - below the level we have detected.” "Success in the hunt for the missing genetic causes of common disease has become possible in the last few years and we expect to find more as higher resolution searches become possible." The research group have maximized the value of their research by not only mapping the CNVs, but by also genotyping them - assigning them to a specific genetic background that makes them readily useful in wider genetic studies, such as the Wellcome Trust Case Control Consortium. "We were determined to develop not only the map, but also to provide the resources that help other researchers and clinical cytogeneticists most rapidly use our CNV results," comments Dr Charles Lee, one of the project leaders from Brigham and Women's Hospital and Harvard Medical School in Boston, USA. "Already, the data that we have generated is benefiting other large-scale studies such as the 1000 Genomes Projects as well as making an enormous difference in the accurate interpretation of clinical genetic diagnoses.” "Nonetheless, the human CNV story is far from over." .........
ZenMasterFor more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html