
Remarkably, the regulation of this bacterium's transcriptome is much more similar to that of eukaryotes – organisms whose cells have a nucleus – than previously thought. As in eukaryotes, a large proportion of the transcripts produced from M. pneumoniae's DNA are not translated into proteins. And although its genes are arranged in groups as is typical of bacteria, M. pneumoniae doesn't always transcribe all the genes in a group together, but can selectively express or repress individual genes within each group. Unlike that of other, larger, bacteria, M. pneumoniae's metabolism does not appear to be geared towards multiplying as quickly as possible, perhaps because of its pathogenic lifestyle. Another surprise was the fact that, although it has a very small genome, this bacterium is incredibly flexible and readily adjusts its metabolism to drastic changes in environmental conditions. This adaptability and its underlying regulatory mechanisms mean M. pneumoniae has the potential to evolve quickly, and all the above are features it also shares with other, more evolved organisms. "The key lies in these shared features", explains Anne-Claude Gavin, an EMBL group leader who headed the study of the bacterium's proteome: "Those are the things that not even the simplest organism can do without and that have remained untouched by millions of years of evolution – the bare essentials of life". This study required a wide range of expertise, to understand M. pneumoniae's molecular organisation at such different scales and integrate all the resulting information into a comprehensive picture of how the whole organism functions as a system – an approach called systems biology. "Within EMBL's Structural and Computational Biology Unit we have a unique combination of methods, and we pooled them all together for this project", says Peer Bork, joint head of the unit, co-initiator of the project, and responsible for the computational analysis. "In partnership with the CRG group we thus could build a complete overall picture based on detailed studies at very different levels." Bork was recently awarded the Royal Society and Académie des Sciences Microsoft Award for the advancement of science using computational methods. Serrano was recently awarded a European Research Council Senior grant. References: Proteome Organization in a Genome-Reduced Bacterium. Sebastian Kühner, Vera van Noort, Matthew J. Betts, Alejandra Leo-Macias, Claire Batisse, Michaela Rode, Takuji Yamada, Tobias Maier, Samuel Bader, Pedro Beltran-Alvarez, Daniel Castaño-Diez, Wei-Hua Chen, Damien Devos, Marc Güell, Tomas Norambuena, Ines Racke, Vladimir Rybin, Alexander Schmidt, Eva Yus, Ruedi Aebersold, Richard Herrmann, Bettina Böttcher, Achilleas S. Frangakis, Robert B. Russell, Luis Serrano, Peer Bork, and Anne-Claude Gavin Science 27 November 2009: 1235-1240, DOI: 10.1126/science.1176343 Transcriptome Complexity in a Genome-Reduced Bacterium. Marc Güell, Vera van Noort, Eva Yus, Wei-Hua Chen, Justine Leigh-Bell, Konstantinos Michalodimitrakis, Takuji Yamada, Manimozhiyan Arumugam, Tobias Doerks, Sebastian Kühner, Michaela Rode, Mikita Suyama, Sabine Schmidt, Anne-Claude Gavin, Peer Bork, and Luis Serrano Science 27 November 2009: 1268-1271, DOI: 10.1126/science.1176951 Impact of Genome Reduction on Bacterial Metabolism and Its Regulation. Eva Yus, Tobias Maier, Konstantinos Michalodimitrakis, Vera van Noort, Takuji Yamada, Wei-Hua Chen, Judith A. H. Wodke, Marc Güell, Sira Martínez, Ronan Bourgeois, Sebastian Kühner, Emanuele Raineri, Ivica Letunic, Olga V. Kalinina, Michaela Rode, Richard Herrmann, Ricardo Gutiérrez-Gallego, Robert B. Russell, Anne-Claude Gavin, Peer Bork, and Luis Serrano Science 27 November 2009: 1263-1268, DOI: 10.1126/science.1177263 ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/
No comments:
Post a Comment