
"We were interested in the developmental cues that drive the formation of these different cilia subtypes," says Kintner. Clues from previous work in mice persuaded Kintner and his team to take a closer look at cilia in the South African clawed frog Xenopus, a model popular with developmental biologists, and zebrafish. In mice, FoxJ1 is needed to drive the formation of motile but not sensory cilia. The Salk researchers depleted FoxJ1 in both Xenopus and zebrafish by injecting embryos with morpholinos, synthetic DNA-like structures that bind to nucleic acids and work like dimmer switches to turn down gene expression. When FoxJ1 was turned down, nodal cilia development was disrupted, causing organ displacement and defects in the left-right asymmetry. The real surprise came when the scientists increased the levels of FoxJ1. "We started seeing cilia popping up all over the place," says Kintner, "and they were not random subtypes; they looked just like the nodal cilia that form on the cells to generate the embryonic left-right flow." "These ectopic cilia were really interesting," adds Jennifer Stubbs, first author of the study and a graduate student in the Kintner lab, "and no one had been able to show them in any other system." These findings call into question current theories as to how FoxJ1 regulates motile cilia. Motile cilia are anchored to the cell surface at sites called basal bodies, and FoxJ1's role in their development was thought to act primarily by regulating this docking process. Since activating FoxJ1 was sufficient to drive the formation of cilia in usually cilia-less cells, however, Kintner and colleagues reasoned that FoxJ1 must play a broader role in promoting cilia development. They tested this hypothesis using microarray analysis to determine what genes FoxJ1 activated. Indeed, FoxJ1 increased the levels of a host of genes involved in motile cilia development rather than just a small set relating to the basal body. "This really suggests that at least in Xenopus, FoxJ1 is a master-regulator of ciliogenesis and doesn't just play a role in basal body docking," says Stubbs. Kintner and colleagues are currently investigating in closer detail the suite of genes activated by FoxJ1 to further understand its mode of action. “Doing so might help develop novel therapies to treat ciliopathies, whose symptoms range from respiratory defects to infertility. In many diseases such as chronic asthmas and cystic fibrosis, trouble clearing mucus causes defects where the ciliated cells begin to die," says Kintner, "and knowing about the dominant pathways that drive differentiation of ciliated cells types might allow us to do something prevent that situation." "It may provide a way of repairing ciliated cells that are already there, enabling them to regrow their cilia," says Jennifer Stubbs. ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
No comments:
Post a Comment