Pages
Sunday, 23 November 2008
Is the Pope about to bestow John Lennon a sainthood!?
Friday, 21 November 2008
Pure Insulin-producing Cells Produced from ESCs
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Thursday, 20 November 2008
Tissue Engineering for Transplanting from Own Stem Cells II
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Tissue Engineering for Transplanting from Own Stem Cells I
First tracheal transplant without immunosuppression Thursday, 20 November 2008 Summary:
After 4 years of going from consultation to consultation, Claudia Castillo finally found a solution to her respiratory problems. The young Colombian woman suffered from a cough that took a long time to be diagnosed as tuberculosis. She arrived at
Hospital Clínic of Barcelona with complications and there, she met Professor Paolo Macchiarini, Head of the Thoracic Surgery Department, who led the international team that made possible the first trachea transplant and the first tissue transplant without immunosuppression. She underwent an operation on the upper part of the trachea but nothing could be done to repair the blockage in the left lung. The infection had led to a severe collapse just before the branch of the trachea and this obstruction prevented air from reaching the lung. The only treatment option at the time involved removing the affected lung. As the young mother of two children, removing the lung would have considerably reduced quality of life for Claudia Castillo. In March 2008, her situation worsened to the point where she was unable to carry out domestic chores or look after her children, so intervention became urgent. In June, after obtaining authorization from the ethics committee of Hospital Clínic of Barcelona and from the Catalan Transplant Organization (OCATT), the first trachea transplant and the first tissue transplant of any kind without immunosuppression took place. The study, published online on Wednesday by the journal The Lancet, with Professor Paolo Macchiarini as the principal author, together with his colleagues Dr. Philip Jungebluth, Dr. Tetsuhiko Go and Dr. Jaume Martorell, presents the details of this transplant – the first treatment alternative for treating the collapsed trachea that the patient was suffering from. The technique consists of depleting the trachea to be transplanted of the donor's cells and repopulating it with cells from the recipient before the operation. Thus, thanks to tissue bioengineering, the donor trachea becomes a hybrid that the recipient's body identifies as its own, thereby making immunosuppression unnecessary. The transplant and most of the processes involved were carried out at Hospital Clínic of Barcelona, but this would have been impossible without the collaboration of the University of Bristol (UK), the University of Padua (Italy) and the University of Milan (Italy). Professor Paolo Macchiarini led the prior basic research. The process of preparing the trachea requires many cycles of washing to eliminate all the donor cells – many more than those suggested by the basic research. The tissue was a 7-cm segment of trachea from a 51-year-old donor who had died from brain haemorrhage. The team of Dr. Maria T. Conconi at the University of Padua (Italy) confirmed that, after 25 washing cycles, the trachea treated at Hospital Clínic was free from donor antigens – the molecules that would cause the tissue to be rejected by the recipient. Meanwhile, at the University of Bristol, the teams of Professor Martin Birchall and Professor Anthony Hollander cultivated the recipient's cells that would later be introduced into the trachea. These cells were epithelial cells taken from the trachea and cartilage cells (chondrocytes), differentiated from stem cells taken from the patient's bone marrow. This technique was initially designed to treat cases of osteoarthritis. Back at Hospital Clínic, the team of Professor Paolo Macchiarini introduced these cells into the trachea using a bioreactor designed by the team of Dr. Sandra Mantero at the University of Milan. The epithelial cells were inserted into the inner surface of the trachea and the chondrocytes covered the outer surface. The donor tissue thus became a hybrid very similar to new tissue from the patient herself. The operation was performed 4 days later at Hospital Clínic, where the thoracic surgery team extracted the damaged section of trachea and replaced it with the new trachea. This pioneering operation was not without question marks but if anything had gone wrong, it would have been changed to a lung-resection operation – the classical treatment choice. Thanks to the skill of the surgeons and the huge international effort, the operation was a success. Five months later, the lung that had been so long out of use was providing normal respiration. This innovation in biomedicine and surgery may become an alternative for diseases of the upper airways, such as congenital deformities or primary tumours, which cannot currently be treated using conventional surgical techniques. The clinical application of stem cell cultures and the prevention of the problems deriving from immunosuppression are a milestone in the history of transplantation. There are already some cases being studied that may benefit from the new technique and research continues into improving the process. If all goes well, Claudia Castillo will be just the first patient to benefit from a new advance led by researchers from Hospital Clínic of Barcelona. Reference: Clinical transplantation of a tissue-engineered airway Paolo Macchiarini, Philipp Jungebluth, Tetsuhiko Go, M Adelaide Asnaghi, Louisa E Rees, Tristan A Cogan, Amanda Dodson, Jaume Martorell, Silvia Bellini, Pier Paolo Parnigotto, Sally C Dickinson, Anthony P Hollander, Sara Mantero, Maria Teresa Conconi, Martin A Birchall The Lancet, Early Online Publication, 19 November 2008, doi:10.1016/S0140-6736(08)61598-6See also: Tissue Engineering for Transplanting from Own Stem Cells II CellNEWS - Thursday, 20 November 2008 ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Extinct Woolly-mammoth Genome Sequenced
Thursday, 20 November 2008

Scientists at Penn State are leaders of a team that is the first to report the genome-wide sequence of an extinct animal, according to Webb Miller, professor of biology and of computer science and engineering and one of the project's two leaders. The scientists sequenced the genome of the woolly mammoth, an extinct species of elephant that was adapted to living in the cold environment of the northern hemisphere. They sequenced four billion DNA bases using next-generation DNA-sequencing instruments and a novel approach that reads ancient DNA highly efficiently.
"Previous studies on extinct organisms have generated only small amounts of data," said Stephan C. Schuster, Penn State professor of biochemistry and molecular biology and the project's other leader.
"Our dataset is 100 times more extensive than any other published dataset for an extinct species, demonstrating that ancient DNA studies can be brought up to the same level as modern genome projects."

The researchers suspect that the full woolly-mammoth genome is over four-billion DNA bases, which they believe is the size of the modern-day African elephant's genome. Although their dataset consists of more than four-billion DNA bases, only 3.3 billion of them — a little over the size of the human genome — currently can be assigned to the mammoth genome. Some of the remaining DNA bases may belong to the mammoth, but others could belong to other organisms, like bacteria and fungi, from the surrounding environment that had contaminated the sample. The team used a draft version of the African elephant's genome, which currently is being generated by scientists at the Broad Institute of MIT and Harvard, to distinguish those sequences that truly belong to the mammoth from possible contaminants.
"Only after the genome of the African elephant has been completed will we be able to make a final assessment about how much of the full woolly-mammoth genome we have sequenced," said Miller.
The team plans to finish sequencing the woolly mammoth's genome when the project receives additional funding.

The team sequenced the mammoth's nuclear genome using DNA extracted from the hairs of a mammoth mummy that had been buried in the Siberian permafrost for 20,000 years and a second mammoth mummy that is at least 60,000-years-old. By using hair, the scientists avoided problems that have bedevilled the sequencing of ancient DNA from bones because DNA from bacteria and fungi, which always are associated with ancient DNA, can more easily be removed from hair than from bones. Another advantage of using hair is that less damage occurs to ancient DNA in hair because the hair shaft encases the remnant DNA like a biological plastic, thus protecting it from degradation and exposure to the elements.

Members of the team previously ruled out humans as a cause of extinction for at least one of the Siberian sub-populations — the group appears to have gone extinct at least 45,000 years ago at a time when there were no humans living in Siberia. However, much debate still remains regarding the causes of extinction for the other group and for those populations that lived in other places, such as North America. Currently, the team is searching the mammoth's genome for clues about its extinction.
Tuesday, 18 November 2008
Kangaroo Genome Mapped
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
‘Orphan’ Genes Importance in Evolution

A freshwater polyp Hydra and its tentacles during bud formation.
In one species, Hydra oligactis, emergence of its tentacles during bud formation is not synchronised; in Hydra vulgaris all five tentacles develop simultaneously and symmetrically; in Hydra vulgaris polyps genetically altered to produce large amounts of protein from the “orphan gene” Hym301, tentacles are formed in an irregular and asymmetric pattern. The data indicate that "novel" genes are involved in generation of novel morphological features that characterise different species, thus pointing the way to a new, more complete understanding of how evolution works at the level of a particular group of animals. Emergence of "novel" genes may reflect evolutionary processes, which allow animals to adapt in the best way to changing environmental conditions and new habitats. Reference: A novel gene family controls species-specific morphological traits in Hydra Konstantin Khalturin
, Friederike Anton-Erxleben, Sylvia Sassmann, Jörg Wittlieb, Georg Hemmrich, Thomas C. G. Bosch PLoS Biol 6(11)(2008): e278 doi:10.1371/journal.pbio.0060278 ......... ZenMasterFor more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
US Scientists Self-censor During Bush Administration
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Monday, 17 November 2008
Cellular Damage in Huntington's Disease
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
How Cilia Make Us Asymmetric

"We were interested in the developmental cues that drive the formation of these different cilia subtypes," says Kintner. Clues from previous work in mice persuaded Kintner and his team to take a closer look at cilia in the South African clawed frog Xenopus, a model popular with developmental biologists, and zebrafish. In mice, FoxJ1 is needed to drive the formation of motile but not sensory cilia. The Salk researchers depleted FoxJ1 in both Xenopus and zebrafish by injecting embryos with morpholinos, synthetic DNA-like structures that bind to nucleic acids and work like dimmer switches to turn down gene expression. When FoxJ1 was turned down, nodal cilia development was disrupted, causing organ displacement and defects in the left-right asymmetry. The real surprise came when the scientists increased the levels of FoxJ1. "We started seeing cilia popping up all over the place," says Kintner, "and they were not random subtypes; they looked just like the nodal cilia that form on the cells to generate the embryonic left-right flow." "These ectopic cilia were really interesting," adds Jennifer Stubbs, first author of the study and a graduate student in the Kintner lab, "and no one had been able to show them in any other system." These findings call into question current theories as to how FoxJ1 regulates motile cilia. Motile cilia are anchored to the cell surface at sites called basal bodies, and FoxJ1's role in their development was thought to act primarily by regulating this docking process. Since activating FoxJ1 was sufficient to drive the formation of cilia in usually cilia-less cells, however, Kintner and colleagues reasoned that FoxJ1 must play a broader role in promoting cilia development. They tested this hypothesis using microarray analysis to determine what genes FoxJ1 activated. Indeed, FoxJ1 increased the levels of a host of genes involved in motile cilia development rather than just a small set relating to the basal body. "This really suggests that at least in Xenopus, FoxJ1 is a master-regulator of ciliogenesis and doesn't just play a role in basal body docking," says Stubbs. Kintner and colleagues are currently investigating in closer detail the suite of genes activated by FoxJ1 to further understand its mode of action. “Doing so might help develop novel therapies to treat ciliopathies, whose symptoms range from respiratory defects to infertility. In many diseases such as chronic asthmas and cystic fibrosis, trouble clearing mucus causes defects where the ciliated cells begin to die," says Kintner, "and knowing about the dominant pathways that drive differentiation of ciliated cells types might allow us to do something prevent that situation." "It may provide a way of repairing ciliated cells that are already there, enabling them to regrow their cilia," says Jennifer Stubbs. ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Tiny Sacs from Cells Carry Information about Tumours
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Wednesday, 12 November 2008
Newborn Neurons in the Adult Brain Can Settle in the Wrong Neighbourhood

Newborn neurons deficient in cdk5 (green) extend aberrant dendrites that nonetheless synaptically integrate into the pre-existing dentate circuitry containing neurons (red) and glial cells (blue). From: For New Neurons in an Old Brain, cdk5 Shows the Way Robinson R PLoS Biology Vol. 6, No. 11, e291 doi:10.1371/journal.pbio.0060291.
In fact, the inappropriate synaptic connections made by cdk5-deficient cells persisted for months after the treatment with cdk5-antagonizing retroviruses. "One might have predicted that aberrant maturing nerve cells would get kicked out of the circuitry later on," reports Jessberger, who followed the behaviour of newborn granule cells in treated mice long after cdk5 activity was eliminated. "Even after one year, some of those cells remained in the wrong part of the hippocampus." "The nice part of this story is that it emerged from a systems genetics approach we used in a previous study," says Gage. "It continues our effort to apply genetic analysis to find chromosomal regions harbouring genes that may play a critical role in neurogenesis." Reference: Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus Sebastian Jessberger, Stefan Aigner, Gregory D. Clemenson Jr., Nicolas Toni, D. Chichung Lie, Özlem Karalay, Rupert Overall, Gerd Kempermann, Fred H. Gage PLoS Biol (2008) 6(11): e272.
doi:10.1371/journal.pbio.0060272 See also: For New Neurons in an Old Brain, cdk5 Shows the Way Richard Robinson PLoS Biol (2008), 6(11): e291 doi:10.1371/journal.pbio.0060291 ......... ZenMasterFor more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Teeth Stem Cells Can Stimulate Growth of Brain Cells in Monkeys
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Tuesday, 11 November 2008
Biological Reaction Essential to Life Takes 2.3B Years Without Enzyme

For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Umbilical Cord Blood May Help Build New Heart Valves
Umbilical Cord Blood May Help Build New Heart Valves Tuesday, 11 November 2008 Children with heart defects may someday receive perfectly-matched new heart valves built using stem cells from their umbilical cord blood, according to research presented at the American Heart Association's Scientific Sessions 2008. When infants are born with malfunctioning heart valves that cannot be surgically repaired, they rely on replacements from animal tissue, compatible human organ donations or artificial materials. These replacements are lifesaving, but do not grow and change shape as a child develops; so two or more surgeries may be needed to replace outgrown valves. The animal tissue may also stiffen over time as well and be less durable than a normal human valve. With artificial valves, children also must be treated with blood thinners. "In our concept, if prenatal testing shows a heart defect, you could collect blood from the umbilical cord at birth, harvest the stem cells, and fabricate a heart valve that is ready when the baby needs it," said Ralf Sodian, M.D., lead author of the study and a cardiac surgeon at the University Hospital of Munich. The tissue engineering of heart valves is still in its infancy, with various researchers investigating the possibility of using cells from blood, bone marrow or amniotic fluid. In the study, the research team used stem cells (CD133+ cells) derived from umbilical cord blood. The cord blood was frozen to preserve it. After 12 weeks, the cells were seeded onto eight heart valve scaffolds constructed of a biodegradable material and then grown in a laboratory. Afterwards, examination using electron microscopes revealed that the cells had grown into pores of the scaffolding and formed a tissue layer. Biochemical examination indicated that the cells had not only survived and grown, but had produced important elements of the "extracellular matrix," the portion of body tissue that functions outside of cells and is essential to tissue function and structure. Compared with human tissue from pulmonary heart valves, the tissue-engineered valves formed:
- 77.9 percent as much collagen (the main protein in connective tissue);
- 85 percent as much glycosaminoglycan, a carbohydrate important in connective tissue); and
- 67 percent as much elastin (a protein in connective tissue)
Furthermore, using antibodies to detect various proteins, the researchers found the valves contained desmin (a protein in muscle cells), laminin (a protein in all internal organs), alpha-actin (a protein that helps muscle cells contract) and CD31, VWF and VE-cadherin (components of blood vessel linings). "These markers all indicate that human cardiovascular tissue was grown in the lab," Sodian said. Several important questions remain to be solved regarding tissue-engineered functional heart valves, including identifying the optimal scaffold material and learning how to condition the valves in the laboratory so they work properly after being implanted, Sodian said. "Tissue engineering provides the prospect of an ideal heart valve substitute that lasts throughout the patient's lifetime and has the potential to grow with the recipient and to change shape as needed," he said. ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Mechanism that Regulates the Development of Stem Cells into Neurons
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html