Pages
Friday, 29 August 2008
Blood Created by Identifying Earliest Stem Cells
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
How Blood Vessel Cells Form Tubes
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Thursday, 28 August 2008
Vaccine Makes Cervical Cancer Control Feasible
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Wednesday, 27 August 2008
Insulin-Producing Cells Created from Adult Pancreatic Cells
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Wednesday, 20 August 2008
Novel Method to Grow Human Embryonic Stem Cells

"The development of animal-free coating methods for hESCs still remains a major challenge due to the complexity of ECMs and insufficient knowledge about how hESCs control cell-cell and cell-ECM interactions," explained Sato, who led the research project. His lab identified a specific signalling pathway, called Rho-Rock, which the hESCs use during colony formation and which plays an important role in physical interactions between hESCs. When the researchers blocked the pathway, they found, as expected, that the normal colony formation of hESCs was considerably impaired. They also found that the hESCs maintained their pluripotency. "Until now, it was generally assumed that the hESC colony formation was pivotal for maintaining pluripotency," Sato said. "But we show that pluripotency can be retained independent of close cell-cell contact." Prue Talbot, the director of UCR's Stem Cell Center
of which Sato is a member, noted that Sato's discovery could affect the way embryonic stem cells are grown in the future. "His work is certainly an important step forward in both understanding signal transduction pathways in stem cells and in the development of an improved methodology for culturing stem cells," she said. In the study, Sato's group extensively screened various types of scaffold materials in combination with Y27632, a chemical compound that blocks the Rho-Rock pathway, and found that the Matrigel coating could be replaced with "poly-D-lysine," a chemically synthesized ECM. The major advantages of poly-D-lysine over Matrigel are that poly-D-lysine is completely animal-free, easy to handle, and its quality is consistent.

"We found that the growth of the hESCs under this novel culture condition was almost identical to the growth of hESCs on Matrigel-coated culture plates, with no compromise in pluripotency," Sato said. Having started his career as a physician in Japan, Sato began researching stem cell biology as a research fellow at The Rockefeller University, NY, one of the foremost research centres in the world. He accepted a faculty position in the Department of Biochemistry at UCR in 2006. Nicole Harb of UCR and Trevor K. Archer of the National Institute of Environmental Health Sciences (NIEHS), NC joined him in the research project. The research was a collaboration between UCR and NIEHS, and funded by UCR start-up funds to Sato and a grant to Archer from the National Institutes of Health. "Our research goal is to understand the basic mechanisms underlying unique biological functions of pluripotent stem cells, and to translate the obtained knowledge into future medical applications," Sato said. His group is now focusing on applying his technique to the latest stem cell technology, "induced pluripotent stem (iPS) cells," which are pluripotent stem cells artificially derived from adult cells without using embryos. "Our next step is to produce new animal-free iPS cell lines," Sato said. UCR's Office of Technology Commercialization has applied for a patent on Sato's discovery and is looking for industrial partners interested in further developing it. Reference: The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells Nicole Harb, Trevor K. Archer, Noboru Sato PLoS ONE (2008), 3(8): e3001. doi:10.1371/journal.pone.0003001 ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Tuesday, 19 August 2008
Red Blood Cells Generated from Human Embryonic Stem Cells

For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Limbs Saved by Menstrual Blood Stem Cells
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Human Embryonic Stem Cells Induce Immune Response in Mice
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Thursday, 14 August 2008
Universal Gene Signalling Mechanism Identified
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Wednesday, 13 August 2008
Casting a Security Net to Catch Harmful Bacteria
Wednesday, 13 August 2008
Swiss and US scientists have made a breakthrough in understanding how a type of white blood cell called the eosinophil may help the body to fight bacterial infections in the digestive tract, according to research published online this week in Nature Medicine. Hans-Uwe Simon, from the University of Bern, Switzerland, Gerald J.Gleich, M.D., from the University of Utah School of Medicine, and their colleagues discovered that bacteria can activate eosinophils to release mitochondrial DNA in a catapult-like fashion to create a net that captures and kills bacteria.
“This is a fascinating finding,” says Gleich, professor of dermatology and internal medicine at the University of Utah and a co-author of the study.
“The DNA is released out of the cell in less than a second.”
Eosinophils, which comprise only 1 to 3 percent of human white blood cells, are known to be useful in the body’s defence mechanisms against parasites. However, their exact role in the immune system is not clear. Unlike other white blood cells, which are distributed throughout the body, eosinophils are found only in selected areas, including the digestive tract. Mitochondria – often referred to as the power plants of the cell – are components within cells that are thought to descend from ancient bacteria. Although most cellular DNA is contained in the nucleus, mitochondria have their own DNA. Previous research has shown that eosinophils secrete toxic granule proteins during parasite infections and that these granule proteins kill bacteria.
Simon, Gleich, and their colleagues found that when eosinophils are stimulated by infection, such as E. coli, they rapidly secrete mitochondrial DNA. This DNA binds to the granule proteins and forms a net that is able to trap and kill bacteria. The researchers also found higher levels of eosinophils were linked to improved survival and lower numbers of bacteria in the blood of mice with widespread bacterial infections.
The toxic proteins released by eosinophils are not always helpful to the body, however, and can damage nearby tissues. The inflammation in some types of asthma and Crohn’s disease, a chronic inflammatory disease of the bowel, is attributed to eosinophils. In fact, Simon and his team first found evidence of these DNA-protein traps in tissue taken from the digestive tracts of people with Crohn’s disease.
Earlier studies suggested another type of white blood cell – the neutrophil – also expels DNA and granule proteins to kill bacteria. However, this DNA comes from the nucleus and its release causes the neutrophil to die. The eosinophil is able to survive after expelling its mitochondrial DNA. The researchers hope to learn more about how eosinophils expel mitochondrial DNA. They speculate that the explosive mechanism might rely on stored energy, similar to the way plants release pollen into the air.
“We don’t know how eosinophils are capable of catapulting mitochondrial DNA so quickly,” says Gleich.
Future investigation may focus on how this energy is generated and how this new knowledge can be applied to the treatment of bacterial infections and inflammatory diseases related to eosinophils.
Reference: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense
Shida Yousefi, Jeffrey A Gold, Nicola Andina, James J Lee, Ann M Kelly, Evelyne Kozlowski, Inès Schmid, Alex Straumann, Janine Reichenbach, Gerald J Gleich & Hans-Uwe Simon
Nature Medicine, 10 August 2008, doi:10.1038/nm.1855
.........
ZenMaster
For more on stem cells and cloning, go to CellNEWS
at http://cellnews-blog.blogspot.com/
Thursday, 7 August 2008
Complete Neanderthal Mitochondrial Genome Sequenced
Thursday, 07 August 2008
A study reported in the August 8th issue of the journal Cell, a Cell Press publication, reveals the complete mitochondrial genome of a 38,000-year-old Neanderthal. The findings open a window into the Neanderthals past and helps answer lingering questions about our relationship to them.
"For the first time, we've built a sequence from ancient DNA that is essentially without error," said Richard Green of Max-Planck Institute for Evolutionary Anthropology in Germany.
The key is that they sequenced the Neanderthal mitochondria — powerhouses of the cell with their own DNA including 13 protein-coding genes — nearly 35 times over. That impressive coverage allowed them to sort out those differences between the Neanderthal and human genomes resulting from damage to the degraded DNA extracted from ancient bone versus true evolutionary changes.
Although it is well established that Neanderthals are the hominid form most closely related to present-day humans, their exact relationship to us remains uncertain, according to the researchers. The notion that Neanderthals and humans may have "mixed" is still a matter of some controversy. Analysis of the new sequence confirms that the mitochondria of Neanderthal’s falls outside the variation found in humans today, offering no evidence of admixture between the two lineages although it remains a possibility.
It also shows that the last common ancestor of Neanderthals and humans lived about 660,000 years ago, give or take 140,000 years. Of the 13 proteins encoded in the mitochondrial DNA, they found that one, known as subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain or COX2, had experienced a surprising number of amino acid substitutions in humans since the separation from Neanderthals.
While the finding is intriguing, Green said, it is not yet clear what it means.
"We also wanted to know about the history of the Neanderthal’s themselves," said Jeffrey Good, also of the Max-Planck Institute.
For instance, the new sequence information revealed that the Neanderthal’s have fewer evolutionary changes overall, but a greater number that alter the amino acid building blocks of proteins. One straightforward interpretation of that finding is that the Neanderthal’s had a smaller population size than humans do, which makes natural selection less effective in removing mutations. That notion is consistent with arguments made by other scientists based upon the geological record, said co-author Johannes Krause.
"Most argue there were a few thousand Neanderthals that roamed over Europe 40,000 years ago."
That smaller population might have been the result of the smaller size of Europe compared to Africa. The Neanderthals also would have had to deal with repeated glaciations, he noted.
"It's still an open question for the future whether this small group of Neanderthals was a general feature, or was this caused by some bottleneck in their population size that happened late in the game?" Green said.
Ultimately, they hope to get DNA sequence information for Neanderthals that predated the Ice Age, to look for a signature that their populations had been larger in the past. Technically, the Neanderthal mitochondrial genome presented in the new study is a useful forerunner for the sequencing of the complete Neanderthal nuclear genome, the researchers said, a feat that their team already has well underway and expected to be unveiled later this year.
The complete Neanderthal nuclear genome sequence, together with comparison with the great apes DNA sequences, many hope will reveal the key genetic changes that propelled the evolution of human behaviour.
Reference:
A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing
Richard E. Green, Anna-Sapfo Malaspinas, Johannes Krause, Adrian W. Briggs, Philip L.F. Johnson, Caroline Uhler, Matthias Meyer, Jeffrey M. Good, Tomislav Maricic, Udo Stenzel, Kay Prüfer, Michael Siebauer, Hernán A. Burbano, Michael Ronan, Jonathan M. Rothberg, Michael Egholm, Pavao Rudan, Dejana Brajković, Željko Kućan, Ivan Gušić, Mårten Wikström, Liisa Laakkonen, Janet Kelso, Montgomery Slatkin, and Svante Pääbo
Cell, Vol 134, 416-426, 08 August 2008
.........
ZenMaster
For more on stem cells and cloning, go to CellNEWS
at http://cellnews-blog.blogspot.com/
Putting microRNAs on the Stem Cell Map
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
iPS Without A Cancer-causing Virus Gene
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html
Disease-Specific Induced Pluripotent Stem Cells
The new iPS lines, developed from the cells of patients ranging in age from one month to 57-years-old and suffering from a range of conditions from Down Syndrome to Parkinson's disease, will be deposited in a new HSCI "core" facility being established at Massachusetts General Hospital (MGH), HSCI co-director Doug Melton announced yesterday. The operations of the iPS Core will be overseen by a faculty committee, which Daley will chair. "We wanted to produce a large number of disease models for ourselves, our collaborators, and the stem cell research community to accelerate research," Daley said. "The original embryonic stem cell lines are generic, and allow you to ask only basic questions. But these new lines are valuable tools for attacking the root causes of disease. Our work is just the beginning for studying thousands of diseases in a Petri dish," he said. Melton said that the HSCI iPS Core will serve as a repository for iPS cells produced by HSCI scientists. "The Core will also function as a technical laboratory to produce these disease- specific lines for use by scientists around the world," Melton said. He went on to say that "the suite of iPS cell lines reported by the Daley group marks an important achievement and a very significant advance for patients suffering from degenerative diseases. These disease-specific iPS cells are invaluable tools that will allow researchers to watch the development diseases in Petri dishes, outside of the patients. And we have good reason to believe that this will make it possible to find new treatments, and eventually drugs, to slow or even stop the course of a number of diseases. In years ahead, this report will be seen as opening the door to a new approach to develop therapies." "One of our goals in creating the NIH Director's Pioneer Award programs was to enable exceptionally creative scientists to move quickly in promising new directions, thereby speeding the intellectual and technical breakthroughs needed to address major challenges in biomedical or behavioural research," said National Institutes of Health Director Elias A. Zerhouni, M.D. "This is certainly the case for Drs. Daley and Hochedlinger, who deployed their Director's award resources to advance our ability to use induced pluripotent stem cells for disease-specific studies and drug development." Reference: Disease-Specific Induced Pluripotent Stem Cells In-Hyun Park, Natasha Arora, Hongguang Huo, Nimet Maherali, Tim Ahfeldt, Akiko Shimamura, M. William Lensch, Chad Cowan, Konrad Hochedlinger, and George Q. Daley Cell ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://cellnews-blog.blogspot.com/ and http://www.geocities.com/giantfideli/index.html