Pages
Monday, 28 January 2008
Stroke victims may benefit from stem cell transplants
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Friday, 25 January 2008
Synthetic Bacterial Genome


The team achieved this technical feat by chemically making DNA fragments in the lab and developing new methods for the assembly and reproduction of the DNA segments. After several years of work perfecting chemical assembly, the team found they could use homologous recombination (a process that cells use to repair damage to their chromosomes) in the yeast Saccharomyces cerevisiae to rapidly build the entire bacterial chromosome from large subassemblies.
“This extraordinary accomplishment is a technological marvel that was only made possible because of the unique and accomplished JCVI team,” said J. Craig Venter, Ph.D., President and Founder of JCVI.
“Ham Smith, Clyde Hutchison, Dan Gibson, Gwyn Benders, and the others on this team dedicated the last several years to designing and perfecting new methods and techniques that we believe will become widely used to advance the field of synthetic genomics.”
The building blocks of DNA — adenine (A), guanine (G), cytosine (C) and thiamine (T) — are not easy chemicals to artificially synthesize into chromosomes. As the strands of DNA get longer they get increasingly brittle, making them more difficult to work with. Prior to today’s publication the largest synthesized DNA contained only 32,000 base pairs. Thus, building a synthetic version of the genome of the bacteria M. genitalium genome that has more than 580,000 base pairs presented a formidable challenge. However, the JCVI team has expertise in many technical areas and a keen biological understanding of several species of mycoplasmas.
“When we started this work several years ago, we knew it was going to be difficult because we were treading into unknown territory,” said Hamilton Smith, M.D., senior author on the publication.
“Through dedicated teamwork we have shown that building large genomes is now feasible and scalable so that important applications such as biofuels can be developed.”
Methods for Creating the Synthetic M. genitalium
The process to synthesize and assemble the synthetic version of the M. genitalium chromosome began first by resequencing the native M. genitalium genome to ensure that the team was starting with an error free sequence. After obtaining this correct version of the native genome, the team specially designed fragments of chemically synthesized DNA to build 101 “cassettes” of 5,000 to 7,000 base pairs of genetic code. As a measure to differentiate the synthetic genome versus the native genome, the team created “watermarks” in the synthetic genome. These are short inserted or substituted sequences that encode information not typically found in nature. Other changes the team made to the synthetic genome included disrupting a gene to block infectivity. To obtain the cassettes the JCVI team worked primarily with the DNA synthesis company Blue Heron Technology, as well as DNA 2.0 and GENEART.

From here, the team devised a five stage assembly process where the cassettes were joined together in subassemblies to make larger and larger pieces that would eventually be combined to build the whole synthetic M. genitalium genome. In the first step, sets of four cassettes were joined to create 25 subassemblies, each about 24,000 base pairs (24kb). These 24kb fragments were cloned into the bacterium Escherichia coli to produce sufficient DNA for the next steps, and for DNA sequence validation. The next step involved combining three 24kb fragments together to create 8 assembled blocks, each about 72,000 base pairs. These 1/8th fragments of the whole genome were again cloned into E. coli for DNA production and DNA sequencing. Step three involved combining two 1/8th fragments together to produce large fragments approximately 144,000 base pairs or 1/4th of the whole genome. At this stage the team could not obtain half genome clones in E. coli, so the team experimented with yeast and found that it tolerated the large foreign DNA molecules well, and that they were able to assemble the fragments together by homologous recombination. This process was used to assemble the last cassettes, from 1/4 genome fragments to the final genome of more than 580,000 base pairs. The final chromosome was again sequenced in order to validate the complete accurate chemical structure. The synthetic M. genitalium has a molecular weight of 360,110 kilodaltons (kDa). Printed in 10 point font, the letters of the M. genitalium JCVI-1.0 genome span 147 pages.

“This is an exciting advance for our team and the field. However, we continue to work toward the ultimate goal of inserting the synthetic chromosome into a cell and booting it up to create the first synthetic organism,” said Dan Gibson, lead author. The research to create the synthetic M. genitalium JCVI-1.0 was funded by Synthetic Genomics, Inc. Key Milestones in JCVI’s Synthetic Genomics Research The work described by Gibson et al. has its genesis in research by Dr. Venter and colleagues in the mid-1990s after sequencing M. genitalium and beginning work on the minimal genome project. This area of research, trying to understand the minimal genetic components necessary to sustain life, began with M. genitalium because it is a bacterium with the smallest genome that we know of that can be grown in pure culture. That work was published in the journal Science in 1995. In 2003 Drs. Venter, Smith and Hutchison made the first significant strides in the development of a synthetic genome by their work in assembling the 5,386 base pair bacteriophage ΦX174 (phi X). They did so using short, single strands of synthetically produced, commercially available DNA (known as oligonucleotides) and using an adaptation of polymerase chain reaction (PCR), known as polymerase cycle assembly (PCA), to build the phi X genome. The team produced the synthetic phi X in just 14 days. In June 2007 another major advance was achieved when JCVI researchers led by Carole Lartigue, Ph.D., announced the results of work on genome transplantation methods allowing them to transform one type of bacteria into another type dictated by the transplanted chromosome. The work was published in the journal Science, and outlined the methods and techniques used to change one bacterial species, Mycoplasma capricolum, into another, Mycoplasma mycoides Large Colony (LC), by replacing one organism’s genome with the other one’s genome. Genome transplantation was the first essential enabling step in the field of synthetic genomics as it is a key mechanism by which chemically synthesized chromosomes can be activated into viable living cells. Today’s announcement of the successful synthesis of the M. genitalium genome is the second step leading to the next experiments to transplant a fully synthetic bacterial chromosome into a living organism and “boot up” the cell. Ethical Considerations Since the beginning of the quest to understand and build a synthetic genome, Dr. Venter and his team have been concerned with the societal issues surrounding the work. In 1995 while the team was doing the research on the minimal genome, the work underwent significant ethical review by a panel of experts at the University of Pennsylvania (Cho et al, Science December 1999:Vol. 286. no. 5447, pp. 2087 – 2090). The bioethical group's independent deliberations, published at the same time as the scientific minimal genome research, resulted in a unanimous decision that there were no strong ethical reasons why the work should not continue as long as the scientists involved continued to engage public discussion. Dr. Venter and the team at JCVI continue to work with bioethicists, outside policy groups, legislative members and staff, and the public to encourage discussion and understanding about the societal implications of their work and the field of synthetic genomics generally. As such, the JCVI’s policy team, along with the Center for Strategic & International Studies (CSIS), and the Massachusetts Institute of Technology (MIT), were funded by a grant from the Alfred P. Sloan Foundation for a 20-month study that explored the risks and benefits of this emerging technology, as well as possible safeguards to prevent abuse, including bioterrorism. After several workshops and public sessions the group published a report in October 2007 outlining options for the field and its researchers. About the J. Craig Venter Institute The JCVI is a not-for-profit research institute dedicated to the advancement of the science of genomics; the understanding of its implications for society; and communication of those results to the scientific community, the public, and policymakers. Founded by J. Craig Venter, Ph.D., the JCVI is home to approximately 400 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy. The legacy organizations of the JCVI are: The Institute for Genomic Research (TIGR), The Center for the Advancement of Genomics (TCAG), the Institute for Biological Energy Alternatives (IBEA), the Joint Technology Center (JTC), and the J. Craig Venter Science Foundation. The JCVI is a 501 (c)(3) organization. Publication: Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome Published Online January 24, 2008Science DOI: 10.1126/science.1151721
Links: J. Craig Venter Institute Synthetic biology for energy production Mycoplasma genitalium genome More from CellNEWS: Venter makes synthetic life... or not yet? October 09, 2007 Next Step Towards Artificial Life Whole Genome Transplantation Achieved in Mycobacterium June 28, 2007 Venter attempt at the minimalistic approach of creating ‘artificially-made’ life November24, 2002 ......... ZenMaster
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Thursday, 24 January 2008
China New Powerhouse of World's Economy and Innovation

Chart shows the change in technological standing for several nations from 1993 to 2007.
The 2007 statistics show China with a technological standing of 82.8, compared to 76.1 for the United States, 66.8 for Germany and 66.0 for Japan. Just 11 years ago, China’s score was only 22.5. The United States peaked in 1999 with a score of 95.4. “China has really changed the world economic landscape in technology,” said Alan Porter, another study co-author and co-director of the Georgia Tech Technology Policy and Assessment Center, which conducted the research. “When you take China’s low-cost manufacturing and focus on technology, then combine them with the increasing emphasis on research and development, the result ultimately won’t leave much room for other countries.” The United States and Japan have both fallen in relative technological standing – though not absolute measures – because of the dramatic rise of China and other nations such as the “Asian Tigers:” South Korea, Singapore and Taiwan. Japan has faltered a bit over time, and if the increasingly-integrated European Union were considered one entity instead of 27 separate countries, it would surpass the United States. “We are seeing consistent gains for China across all the criteria we measure,” Newman said. “As a percentage mover relative to everyone else, we have not seen a stumble for China. The gains have been dramatic, and there is no real sense that any kind of levelling off is occurring.” Most industrialized countries reach a kind of equilibrium in the study, moving up slightly in one data set, or down slightly in another. But the study shows no interruptions in China’s advance. Recent statistics for the value of technology products exported – a key component of technological standing – put China behind the United States by the amount of “a rounding error:” about $100 million. If that trend continues, Newman noted, China will shortly pass the United States in that measure of technological leadership. China’s emphasis on training scientists and engineers – who conduct the research needed to maintain technological competitiveness – suggests it will continue to grow its ability to innovate. In the United States, the training of scientists and engineers has lagged, and post-9/11 immigration barriers have kept out international scholars who could help fill the gap. “For scientists and engineers, China now has less than half as many as we do, but they have a lot of growing room,” noted Newman. “It would be difficult for the United States to get much better in this area, and it would be very easy for us to get worse. It would be very easy for the Chinese to get better because they have more room to manoeuvre.” China is becoming a leader in research and development, Porter noted. For instance, China now leads the world in publications on nanotechnology, though US papers still receive more citations. On the input indicators calculated for 2007, China lags behind the United States. In “national orientation,” China won a score of 62.6, compared to 78.0 for the United States. In “socioeconomic infrastructure,” China rated 61.2, compared to 87.9 for the United States. In the other two factors, China also was behind the US, 60.0 versus 95.5 for “technological infrastructure” and 85.2 versus 93.4 for “productive capacity.” China has been dramatically improving its input scores, which portends even stronger technological competitiveness in the future. “It’s like being 40 years old and playing basketball against a competitor who’s only 12 years old – but is already at your height,” Newman said. “You are a little better right now and have more experience, but you’re not going to squeeze much more performance out. The future clearly doesn’t look good for the United States.” .........
ZenMasterFor more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Pancreatic Stem Cells Found in Adult Mice
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Spain Approves Therapeutic Cloning Projects
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Wednesday, 23 January 2008
International Human Genome Project Launched
Three-year study will produce most detailed map of human genetic variation Wednesday, 23 January 2008 An international research consortium today announced the 1000 Genomes Project, an ambitious effort that will involve sequencing the genomes of at least a thousand people from around the world to create the most detailed and medically useful picture to date of human genetic variation. The project will receive major support from the Wellcome Trust Sanger Institute in Hinxton, England, the Beijing Genomics Institute, Shenzhen (BGI Shenzhen) in China and the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH). Drawing on the expertise of multidisciplinary research teams, the 1000 Genomes Project will develop a new map of the human genome that will provide a view of biomedically relevant DNA variations at a resolution unmatched by current resources. As with other major human genome reference projects, data from the 1000 Genomes Project will be made swiftly available to the worldwide scientific community through freely accessible public databases. “The 1000 Genomes Project will examine the human genome at a level of detail that no one has done before,” said Richard Durbin, Ph.D., of the Wellcome Trust Sanger Institute, who is co-chair of the consortium. “Such a project would have been unthinkable only two years ago. Today, thanks to amazing strides in sequencing technology, bioinformatics and population genomics, it is now within our grasp. So we are moving forward to build a tool that will greatly expand and further accelerate efforts to find more of the genetic factors involved in human health and disease.” Any two humans are more than 99 percent the same at the genetic level. However, it is important to understand the small fraction of genetic material that varies among people because it can help explain individual differences in susceptibility to disease, response to drugs or reaction to environmental factors. Variation in the human genome is organized into local neighbourhoods called haplotypes, which are stretches of DNA usually inherited as intact blocks of information. Recently developed catalogues of human genetic variation, such as the HapMap, have proved valuable in human genetic research. Using the HapMap and related resources, researchers already have discovered more than 100 regions of the genome containing genetic variants that are associated with risk of common human diseases such as diabetes, coronary artery disease, prostate and breast cancer, rheumatoid arthritis, inflammatory bowel disease and age-related macular degeneration. However, because existing maps are not extremely detailed, researchers often must follow those studies with costly and time-consuming DNA sequencing to help pinpoint the precise causative variants. The new map would enable researchers to more quickly zero in on disease-related genetic variants, speeding efforts to use genetic information to develop new strategies for diagnosing, treating and preventing common diseases. The scientific goals of the 1000 Genomes Project are to produce a catalogue of variants that are present at 1 percent or greater frequency in the human population across most of the genome, and down to 0.5 percent or lower within genes. This will likely entail sequencing the genomes of at least 1,000 people. These people will be anonymous and will not have any medical information collected on them, because the project is developing a basic resource to provide information on genetic variation. The catalogue that is developed will be used by researchers in many future studies of people with particular diseases. “This new project will increase the sensitivity of disease discovery efforts across the genome five-fold and within gene regions at least 10-fold,” said NHGRI Director Francis S. Collins, M.D., Ph.D. “Our existing databases do a reasonably good job of cataloguing variations found in at least 10 percent of a population. By harnessing the power of new sequencing technologies and novel computational methods, we hope to give biomedical researchers a genome-wide map of variation down to the 1 percent level. This will change the way we carry out studies of genetic disease.” With current approaches, researchers can search for two types of genetic variants related to disease. The first type is very rare genetic variants that have a severe effect, such as the variants responsible for causing cystic fibrosis and Huntington’s disease. To find these rare variants, which typically affect fewer than one in 1,000 people, researchers often must spend years on studies involving affected families. However, most common diseases, such as diabetes and heart disease, are influenced by more common genetic variants. Most of these common variants have weak effects, perhaps increasing risk of a common condition by 25 percent or less. Recently, using a new approach known as a genome-wide association study, researchers have been able to search for these common variants. “Between these two types of genetic variants — very rare and fairly common — we have a significant gap in our knowledge. The 1000 Genomes Project is designed to fill that gap, which we anticipate will contain many important variants that are relevant to human health and disease,” said David Altshuler, M.D., Ph.D., of Massachusetts General Hospital in Boston and the Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University in Cambridge, Mass., who is the consortium’s co-chair and was a leader of the HapMap Consortium. One use of the new catalogue will be to follow up genome-wide association studies. Investigators who find that a part of the genome is associated with a disease will be able to look it up in the catalogue, and find almost all variants in that region. They will then be able to conduct functional studies to see whether any of the catalogued variants directly contribute to the disease. The 1000 Genomes Project builds on the human haplotype map developed by the International HapMap Project. The new map will provide genomic context surrounding the HapMap’s genetic variants, giving researchers important clues to which variants might be causal, including more precise information on where to search for causal variants. Going a major step beyond the HapMap, the 1000 Genomes Project will map not only the single-letter differences in people’s DNA, called single nucleotide polymorphisms (SNPs), but also will produce a high-resolution map of larger differences in genome structure called structural variants. Structural variants are rearrangements, deletions or duplications of segments of the human genome. The importance of these variants has become increasingly clear with surveys completed in the past 18 months that show these differences in genome structure may play a role in susceptibility to certain conditions, such as mental retardation and autism. In addition to accelerating the search for genetic variants involved in susceptibility to common diseases, the map produced by the 1000 Genomes Project will provide a deeper understanding of human genetic variation and open the door to many other new findings of significance to both medicine and basic human biology. The sequencing work will be carried out at the Sanger Institute, BGI Shenzhen and NHGRI’s Large-Scale Sequencing Network, which includes the Broad Institute of MIT and Harvard; the Washington University Genome Sequencing Center at the Washington University School of Medicine in St. Louis; and the Human Genome Sequencing Center at the Baylor College of Medicine in Houston. The consortium may add other participants over time. The European Bioinformatics Institute (EBI), working with long-term collaborator the US National Institute of Biotechnology Information (NCBI), will make the data swiftly available to the worldwide scientific community through freely available public databases. The EBI and NCBI will collect and analyse sequence generated by the Wellcome Trust Sanger Institute, the Beijing Genomics Institute, Shenzhen, China, and the USA’s National Human Genome Research Institute Large-Scale Sequencing Network. The project depends on large-scale implementation of several new sequencing platforms. Using standard DNA sequencing technologies, the effort would likely cost more than $500 million. However, leaders of the 1000 Genomes Project expect the costs to be far lower – in the range of $30 million to $50 million – because of the project’s pioneering efforts to use new sequencing technologies in the most efficient and cost-effective manner. In the first phase of the 1000 Genomes Project, lasting about a year, researchers will conduct three pilots. The results of the pilots will be used to decide how to most efficiently and cost effectively produce the project’s detailed map of human genetic variation. The first pilot will involve sequencing the genomes of two nuclear families (both parents and an adult child) at deep coverage that averages 20 passes of each genome. This will provide a comprehensive dataset from six people that will help the project figure out how to identify variants using the new sequencing platforms, and serve as a basis for comparison for other parts of the effort. The second pilot will involve sequencing the genomes of 180 people at low coverage that averages two passes of each genome. This will test the ability to use low-coverage data from new sequencing platforms to identify sequence variants and to put them in their genomic context. The third pilot will involve sequencing the coding regions, called exons, of about 1,000 genes in about 1,000 people. This is aimed at exploring how best to obtain an even more detailed catalogue in the approximately 2 percent of the genome that is comprised of protein-coding genes. During its two-year production phase, the 1000 Genomes Project will deliver sequence data at an average rate of about 8.2 billion bases per day, the equivalent of more than two human genomes every 24 hours. The volume of data – and the interpretation of those data – will pose a major challenge for leading experts in the fields of bioinformatics and statistical genetics. “This project will examine the human genome in a detail that has never been attempted – the scale is immense. At 6 trillion DNA bases, the 1000 Genomes Project will generate 60-fold more sequence data over its three-year course than have been deposited into public DNA databases over the past 25 years,” said Gil McVean, Ph.D., of the University of Oxford in England, one of the co-chairs of the consortium’s analysis group. “In fact, when up and running at full speed, this project will generate more sequence in two days than was added to public databases for all of the past year.” The 1000 Genomes Project will use samples from volunteer donors who gave informed consent for their DNA to be analyzed and placed in public databases. NHGRI and its partners will follow the extensive and careful ethical procedures established for previous projects. As was the case for the International HapMap Project and Human Genome Project, the 1000 Genomes Project will have an expert working group devoted to examining the ethical, legal and social issues related to its research. The first thousand samples for the 1000 Genomes Project will come from those used for the HapMap and from additional samples in the extended HapMap set, which used the same collection processes. No medical or personal identifying information was obtained from the donors, and the samples are labelled only by the population from which they were collected. The donors’ anonymity was enhanced by recruiting more donors than were actually used. Similar processes will be used for collecting additional samples for the 1000 Genomes Project. Among the populations whose DNA will be sequenced in the 1000 Genomes Project are: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. “This project reinforces our commitment to transform genomic information into tools that medical research can use to understand common disease,” said Jun Wang, Ph.D., associate director of BGI Shenzhen, whose laboratory will participate in the 1000 Genomes Project and which also took part in the HapMap Project. “It will benefit all nations by creating a valuable resource for researchers around the globe.” The detailed map of human genetic variation will be used by many researchers seeking to relate genetic variation to particular diseases. In turn, such research will lay the groundwork for the personal genomics era of medicine, in which people routinely will have their genomes sequenced to predict their individual risks of disease and response to drugs. The data generated by the 1000 Genomes Project will be held by and distributed from the European Bioinformatics Institute and the National Center for Biotechnology Information, which is part of NIH. There will also be a mirror site for data access at BGI Shenzhen. In addition to a catalogue of variants, the data will include information about surrounding variation that can speed identification of the most important variants. Links:
References: Genomics sizes up: China launches large-scale human sequencing initiative
Knome Lands Two Customers for Whole-Genome Sequencing ......... ZenMasterFor more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Deutsche Forschungsgemeinschaft Skeptical of Human Cloning
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Sunday, 20 January 2008
Embryonic Stem Cell Transplantation Improves Muscular Dystrophy in Mice

For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Saturday, 19 January 2008
Batten Disease Trial Girl Dies
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Friday, 18 January 2008
Stem Cell Research Aims to Tackle Parkinson's Disease

For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
UK HFEA Approves Human-Animal Hybrid Embryo Research
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Human Cloning Achieved?
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Wednesday, 16 January 2008
CIRM Gets 57 Applications for New hESC Lines Grants
- Derivation of new human embryonic stem cell lines using excess or rejected early-stage human embryos generated by in vitro fertilization.
- Derivation of pluripotent human stem cell lines from other sources using alternative methods such as, but not limited to, somatic cell nuclear transfer (SCNT) or reprogramming of neonatal or adult cells (iPS cells).
Completed applications for the New Cell Lines Awards are due on February 5, 2008. Review of applications by the Grants Working Group is anticipated for March or April of 2008, with review and approval by the Independent Citizen’s Oversight Committee (ICOC), CIRM’s governing board, projected for June 2008. .........
ZenMasterFor more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Monday, 14 January 2008
Recreation of Beating Heart in the Laboratory
For more on stem cells and cloning, go to CellNEWS at http://www.geocities.com/giantfideli/index.html
Thursday, 10 January 2008
ACT Make hESC Lines Without Destroying Embryos
Thursday, 10 January 2008

Advanced Cell Technology, Inc. together with colleagues announced today the development of five human embryonic stem cell (hESC) lines without the destruction of embryos. These new results have the potential to end the ethical debate surrounding the use of embryos to derive stem cells. In fact, the NIH report to the President refers to this technology as one of the viable alternatives to the destruction of embryos. The new method will be published today in the journal Cell Stem Cells, published by Cell Press.
The peer-reviewed technique was initially carried out by ACT scientists under the direction of Robert Lanza, M.D., and then independently replicated by scientists on the West Coast. Single cells were removed from the embryos using a technique similar to preimplantation genetic diagnosis (PGD). The biopsied embryos continued to develop normally and were then frozen. The cells that were removed were cultured utilizing a proprietary methodology that recreates the optimal developmental environment, which substantially improved the efficiency of deriving stem cells to rates comparable to using the traditional approach of deriving stem cells from the inner cell mass of a whole blastocyst stage embryo. The stem cells were genetically normal and differentiated into cell types of all three germ layers of the body, including blood cells, neurons, heart cells, cartilage, and other cell types of potentially therapeutic significance.
“This is a working technology that exists here and now,” said Robert Lanza, M.D., Chief Scientific Officer at Advanced Cell Technology and senior author of the paper.
“It could be used to increase the number of stem cell lines available to federal researchers immediately. We could send these cells out to researchers tomorrow. If the White House approves this new methodology, researchers could effectively double or triple the number of stem cell lines available within a few months. Too many needless deaths continue to occur while this research is being held up. I hope the President will act now and approve these stem cell lines quickly.”
The paper published today also addresses several other important issues. First, the stem cells were derived without culturing multiple cells from each embryo together, and at efficiency levels similar to that reported for conventional stem cell derivation techniques using blastocysts. Second, it addresses ethical objections that the derivation system required co-culture with hESCs from other embryos that were destroyed. The current study demonstrates that hESC co-culture is not an essential part of the derivation procedure. The stem cell lines generated in the present study appear to have the same characteristics as other hESC lines, including expression of the same markers of pluripotency, self-renewing capacity, genetic stability, and ability to differentiate into derivatives of all three germ layers of the body.
“We are excited that our new method for generating human embryonic stem cell lines without the destruction of embryos has been accepted for inclusion by such a prestigious publication,” said William M. Caldwell IV, Chairman and CEO of Advanced Cell Technology.
“This new approach addresses the President Bush’s ethical concerns. We are hopeful that the NIH will consider this new approach for federal funding. We believe that such consideration reflects the desire of the American people to bring therapies derived from stem cell research to patients with few or no alternatives.”
Reference:
Human Embryonic Stem Cell Lines Generated without Embryo Destruction
Other contributors to the study and publication include Young Chung and Irina Klimanskaya, Sandy Becker, Tong Li, Marc Maserati, and Shi-Jiang Lu of Advanced Cell Technology; Tamara Zdravkovic, Olga Genbacev, and Susan Fisher of the University of California, San Francisco; and Dusko Ilic and Ana Krtolica of StemLifeLine.
.........
ZenMaster
Wednesday, 9 January 2008
Newcastle First to Pay for Human Eggs
For more on stem cells and cloning, go to CellNEWSat http://www.geocities.com/giantfideli/index.html