Saturday, 11 April 2015

Researchers Grow Cardiac Tissue on 'Spider Silk' Substrate

Researchers Grow Cardiac Tissue on 'Spider Silk' Substrate
Saturday, 11 April 2015

Genetically engineered fibres of the protein spidroin, which is the construction material for spider webs, has proven to be a perfect substrate for cultivating heart tissue cells, Moscow Institute of Physics and Technology researchers found. They discuss their findings in an article that has recently come out in the journal PLOS ONE.

These are heart tissue cells grown on a matrix,
stained with fluorescent markers. Credit: ©
Alexander Teplenin et al./PLOS ONE.
The cultivation of organs and tissues from a patient's cells is the leading edge of medical research - regenerative methods can solve the problem of transplant rejection. However, it’s quite a challenge to find a suitable frame, or substrate, to grow cells on. The material should be non-toxic and elastic and should not be rejected by the body or impede cell growth. A group of researchers led by Professor Konstantin Agladze, who heads the Laboratory of the Biophysics of Excitable Systems at MIPT, works on cardiac tissue engineering. The group has been cultivating fully functional cardiac tissues, able to contract and conduct excitation waves, from cells called cardiomyocytes. Previously, the group used synthetic polymeric nano-fibres but recently decided to assay another material – electro-spun fibres of spidroin, the cobweb protein. Cobweb strands are incredibly light and durable. They're five times stronger than steel, twice more elastic than nylon, and are capable of stretching a third of their length. The structure of spidroin molecules that make up cobweb drag lines is similar to that of the silk protein, fibroin, but is much more durable.

This is a spidroin fibre matrix captured with a
microscope. Credit: Alexander Teplenin et al./
PLOS ONE.
Researchers would normally use artificial spidroin fibre matrices as a substrate to grow implants like bones, tendons and cartilages, as well as dressings. Professor Agladze's team decided to find out whether a spidroin substrate derived from genetically modified yeast cells can serve to grow cardiac cells.

For this purpose, they seeded isolated neonatal rat cardiomyocytes on fibre matrices. During the experiment, the researchers monitored the growth of the cells and tested their contractibility and the ability to conduct electric impulses, which are the main features of normal cardiac tissue.

The monitoring, carried out with the help of a microscope and fluorescent markers, showed that within three to five days a layer of cells formed on the substrate that were able to contract synchronously and conduct electrical impulses just like the tissue of a living heart would.

"We can answer positively all questions we put at the beginning of this research project," Professor Agladze says.

"Cardiac tissue cells successfully adhere to the substrate of recombinant spidroin; they grow forming layers and are fully functional, which means they can contract co-ordinately."

Contact: Stanislav Goryachev

Reference:
Functional Analysis of the Engineered Cardiac Tissue Grown on Recombinant Spidroin Fiber Meshes
Alexander Teplenin, Anna Krasheninnikova, Nadezhda Agladze, Konstantin Sidoruk, Olga Agapova, Igor Agapov, Vladimir Bogush, Konstantin Agladze
PLOS ONE, March 23, 2015, DOI:10.1371/journal.pone.0121155
.........


For more on stem cells and cloning, go to CellNEWS at
http://cellnews-blog.blogspot.com/

Post a Comment